Lightweight Formal Analysis of Aspect-Oriented Models

Shin NAKAJIMA
NIl and PRESTO, JST

nkim@nii.ac.jp

ABSTRACT

In aspect-oriented modeling at early stages of the software
development, model descriptions with various abstraction
levels are involved so that two kinds of model transforma-
tion, refinement as well as weaving, should be considered.
We adapt a role-based aspect-oriented modeling method and
define a notion of aspect weaving as role merging. We fur-
ther adapt Alloy, a lightweight formal specification language
and analysis tool, for verification as well as precise model
descriptions. Thanks to the declarative style of expressing
constraints in Alloy, we can formally express role merging
clearly and add it incrementally.

1. INTRODUCTION

Separation of concerns is a promising approach to reducing
the complexity of software design [17]. However, primary
concerns, identified by means of some criteria, are not always
orthogonal to each other. Some residuals are left spread
over the primary ones. Ways to deal with such cross-cutting
concerns are needed [12]. For example, object-oriented pro-
gramming has been successful to represent primary concerns
in the form of class definitions, but other concerns cross mul-
tiple classes. And aspect-oriented programming provides an
idea of an aspect being a first-class element to describe such
concerns scattered among classes [5].

Aspect is quite important in early stages of the software
development. It is a common exercise to analyze a com-
plex system from multiple viewpoints [16] to identify aspects
that are (mostly) independent with each other. Further,
the traceability becomes clear when we keep track of how
a specific aspect at the early stage is refined and weaved in
the software development process. Aspect-oriented model-
ing covers many activities at early stages of the software de-
velopment. E. Baniassad and S. Clarke [1] discuss a method
on how concerns are identified and separated in the require-
ment analysis phase. G. Georg et al [6] adapt the idea of
aspect to have clear design relating to cross-cutting con-
cerns.

Tetsuo TAMAI
The University of Tokyo

tamai@acm.org

N
<<class role>> <<class role>>
LogSource Logging

Figure 1: Logging Aspect

Since aspect-oriented modeling (AOM) is a method at the
early stages of the software development, model descrip-
tions with a variety of abstraction levels are involved. Two
kinds of model transformation in AOM, refinement as well
as weaving, should be considered. On the other hand, weav-
ing is the only transformation of interest in AOP since the
abstraction level dealt with is close to programs. AOP com-
piler or other tool provides mechanisms for weaving aspects
with primary concerns automatically [11][13][24].

In this paper, we first introduce an idea of applying a role-
based modeling method [18][23] to AOM and the method
employs diagram-based model descriptions 4 la UML [6].
The model transformation, either refinement or weaving, is
done manually, and some verification is needed between the
model descriptions before and after the transformation. We
then propose to use Alloy [9][10], a lightweight formal spec-
ification language and analysis tool, for the verification as
well as precise model descriptions. Technically, we discuss
how a role-based aspect model is described in Alloy and
how roles are weaved. We demonstrate our idea by using an
example case on the security aspect.

2. ASPECT-ORIENTED MODELING
2.1 Agpect and Role

As a start, we show here Logging, that is an example cross-
cutting concern often used in AOP literatures. When we
use the Logging framework of Java platform class library, a
method call like below is used.

logger.log(Level .SEVERE, ‘‘fatal’’, e)

Such method calls should be inserted in all the method bod-
ies where we want to record access logs. Although the log-
ging is a conceptual unit focusing on a particular function-
ality, the actual code fragments are scattered over classes.
Aspect/J [11], for example, provides a first-class language
element to describe the logging aspect, which frees us from
writing scattered codes.

<<class role>>
Permission
‘ { derive } ‘

(executing)
Permission

<<class role>>
Principal

(allowed)
Permission

<<class role>>

Figure 2: Access Control Aspect

The Logging aspect in Figure 1, however, is simple when we
view the design in terms of the role-based modeling [18].
All the classes to be logged have LogSource role, and it is
related to Logging role.

Next, we consider another aspect Access Control in Figure
2. It is an aspect taken from the system security, that is
a typical example cross-cutting concern. When Principal
makes an access of either read or write to Target, the as-
pect says that each access is checked against the pre-defined
SecurityPolicy. It is basically a collection of Permission,
and the access checking is done by comparing the

ExecutingPermission with AllowedPermission.

The Access Control aspect is a bit complicated than the Log-
ging aspect. It involves several roles that have some inter-
actions between them. We need a method focusing on the
collaborative behavior of roles [18][22], and the role-based
approach is a good candidate to have model descriptions.

Role-based modeling and aspect-oriented modeling share some
common notion [23]. When we identify a class for a primary
concern, role provides alternative viewpoints to see function
and behavior of the system. A role-based modeling method
is focussed on finding appropriate roles for charactering an
object [18]. And it also can be used as a method to identify
collaborative behavior [20]. On the other hand, the aim of
analyzing roles in AOM puts emphasis on identifying aspects
themselves. K. B. Graversen and K. Osterbye [8] propose a
method on how an identified aspect is translated into advice
in AspectJ. The method is supposed to be applicable for an
aspect such as the Logging, which is rather independent.
For aspects more on the interaction, G. Georg et al [6] pro-
poses a UML-based diagram notation to incorporate role
stereotype, and applies the role-based modeling method for
the case of the security aspect.

In this paper, we adapt the role-based modeling method &
la [6] in that

Aspect = Roles and their Interaction,

and use UML-like diagrams for the model description.

2.2 Refinement and Weaving

Aspect-oriented modeling (AOM) is different from AOP in
that it should deal with model descriptions at various ab-
straction levels. AOM may start with a very abstract aspect

+ Access Check <<class role>>
! Permission
(executing)
Permission

{ derive }

(allowed)
Permission
<

Figure 3: Weaving Two Aspects

model description, and then refine it in several steps to an
adequately concrete level. Finally, the model description
is detailed enough to be implemented. Therefore, we have
to consider two distinctive kinds of model transformations,
refinement and weaving, in AOM.

Weaving in AOM is also different from the case in aspect-
oriented programming. In AOP, an aspect is a first-class
language element, and AOP compiler or other tool provides
mechanisms for weaving aspects with primary concerns au-
tomatically [11][13][24].

In the role-based aspect-oriented modeling adapted in the
paper, the model description is centered around the struc-
tural relationships between the identified roles. Refinement
is a model transformation that adds further roles or expand
some role into detailed ones. Weaving two aspects is similar
to mizins in object-oriented programming [2], and is per-
formed through a process of identifying a role in the first
aspect with role(s) with the second one.

The model transformations, either refinement or weaving,
in AOM is done manually. Thus, there are many places
to contaminate model descriptions by introducing defects.
For example, a property that an aspect originally has is
violated after weaving the aspect with another aspect or
model descriptions of primary concerns. Unfortunately the
diagram such as UML is not adequate for formal analysis of
the model descriptions.

2.3 An Example
We will present how weaving and refinement in AOM looks
like by using a concrete example case.

Weaving in the role-based aspect-oriented modeling is essen-
tially to make two corresponding roles merged. Schemati-
cally, we obtain a model description in Figure 3 after weav-
ing the Logging aspect (Figure 1) and the Access Control
aspect (Figure 2). Target role in Figure 2 is merged with
LogSource role in Figure 1 to become a new fat Target in
Figure 3.

The model description in Figure 3 is still abstract in that
it is not detailed enough to be implemented, for example,
in the Java platform. The model can be refined into the
one in Figure 4 when we make a decision to use the Logging
framework and JAAS (Java Authentication and Authoriza-

‘ {derive } ‘ ! |
(allowed) (sacked) |

(executing) .
. . Permission Permission .| Permission '
V| <conns ciass> :

Principal ! .| Protectionbomain |

FEIRRS dases .
<IAAS class>> <ccassrole>> |
Subject PriviledgedAction Target |

doAsPrivileged

<<amas class>>
‘SecurityManager

checkPermission

<<JAAS class>><<Logging class>

|
AuditSecurityManager ‘ !

|

|

<<Logging class>>

LogFile g checkPermission

Figure 4: Refinement with JAAS

tion System) [7].

Figure 4 shows a model description after the refinement.
Some model elements already turn out to be concrete JAAS
framework classes. Others are still left as roles so that they
are to be weaved with application classes.

Although some of the basic vocabularies such as Principal
and Target are common, the model is quite different from
the one before the refinement. In particular, what is related
to the access checking reflects the mechanism of the stack
inspection provided by the JAAS framework [7].

Principal in Figure 3 is expanded into three of JAAS classes
(Principal, Subject, PriviledgedAction). And classes
such as SecurityManager to implement internal mechanism
for Java security checking appear in the model.

AuditSecurityManager is defined to over-ride checkPermission

method to include logging as well as access checking.

In summary, in the role-based aspect-oriented modeling method,

the weaving is basically a role merging and the refinement
often results in a large change that affects the structural
relationships in the model description.

3. FORMAL ANALYSISWITH ALLOY

We present a case of using Alloy for the precise descriptions
and verification of the model otained with the role-based
aspect-oriented modeling method.

3.1 TheApplication System

3.1.1 Overview

Figure 5 illustrates a sketch of a system that reads in data
from SourceFile, and writes data to DestinationFile prob-
ably after some computation done in BusinessLogic. The
system may have Logging aspect as well as Access Control.

We also enumerate two of the important properties that the
whole system has.

(P1) Every access is logged regardless of the result of access
checking,

Business
Logic

SourceFile

h DestinationFile
<<class role>>
Log File

Figure 5: Sketch of System

(P2) Data is transferred as long as the accesses are allowed.

These two properties are formally checked against various
model descriptions in the succeeding sections.

3.1.2 Alloy Description

We adapt the Alloy language and analyzer [9][10] for formal
description and analysis of the aspect model description.
Alloy has originally been proposed as a formal specification
language for rationalized UML class diagram with OCL.

Basically, we translate a class or role to sig in Alloy, a link
to an attribute in sig with an optional fact constraint, and
functional behavior such as data/control flow to fun. Be-
low, we show a fragment of Alloy description for the simple
application system in Figure 5.

Since the main functionality is moving data from SourceFile
toDestinationFile, we introduce Element that moves around
as well as three sig for the main participants. For example,
SourceFile internally keeps Element data as its attribute
data. InitElement is a subtype of Element, and is meant
to be an initial value representing data of no significance.
ThisElement represents the data that moves around be-
tween the participants.

sig SourceFile { data: Element }

sig DestinationFile { data: Element }

sig BusinessLogic { data: Element }

sig Element {}

static disj sig InitElement extends Element {}
static disj sig ThisElement extends Element {}

We, further, introduce an auxiliary but important GlobalState.

It manages the global state to represent snap-shot of the sys-
tem. Then, two functions, readInFile and writeOutFile,
are state-transformers on GlobalState. They can express
that a data originally in one place moves to another place
after invoking an appropriate function.

sig GlobalState {
bm : Businesslogic,
source SourceFile,
dest : DestinationFile

}

fun readInFile(sl, s2 : GlobalState) {
some x: Element |
sl.source.data = x &&
sl.bm.data = InitElement &&
s2.source.data = sl.source.data &&
s2.bm.data = x &&
s2.dest = sl.dest &&
x != InitElement

}
fun writeOutFile(s1l, s2 : GlobalState) {
some x: Element |
sl.bm.data = x &&
sl.dest.data = InitElement &&
s2.dest.data = x &&
s2.bm.data = sl.bm.data &&
s2.source = sl.source &&
x != InitElement

Then, the net data-flow, from SourceFile to DestinationFile,
is encoded as a logical conjunction of the two fun. And by
using the run command, we can ensure that the required
data-flow is achieved. In the run command, the integer ar-
gument 3 specifies that the size of the search space used by
the Alloy analyzer.

fun execution(sl, s3: GlobalState) {
some s2 : GlobalState |
readInFile(s1,s2) && writeOutFile(s2, s3)
}

run execution for 3

In particular, the run command is a checking of the property
(P1) for the case of the system without access checking.

3.2 Abstract Aspects

We present formal Alloy descriptions of the two aspects.

3.21 Logging Aspect

In order to have rigorous Alloy description, We add some
element roles to the model description in Figure 1. LogData
is a logged data. Since each logged data is distinctive with
each other, sig LogData has a unique Id value as its at-
tribute. The first fact represents the uniqueness constraint
that the two data are the same if their id attributes are
equal. AccessAction represents an access event, and has
similar fact for the uniqueness constraint. Further, it spec-
ifies that LogData is a faithful log of AccessAction if the id
are the same.

sig LogData { id: Id }
fact{ all d1,d2: LogData |
di.id = d2.id => d1 = d2 }
sig AccessAction { id: Id }
fact{
all d: LogData |
one a: AccessAction

a.id = d.id &&
(some t: LogSource | a in t.done)

Just as GlobalState in the example in Section 3.1.2, we in-
troduce LogState for keeping track of the snapshot of the
logging system. LogSource has two attributes: tobe main-
tains a set of AccessAction to be executed and done is a set
of those having been executed. Clearly, the two attributes
are exclusive as specified in fact.

sig LogState {
target: set LogSource,
state: Logging

}

sig Logging { logset

sig LogSource {
done: set AccessAction,
tobe: set AccessAction

}

fact { all t: LogSource | no(t.done & t.tobe) }

set LogData }

Then, the main logging function is a state-transformer on
LogState, and shown in fun execute below.

fun execute(sl: LogState, a: AccessAction): LogState
{
some tl: LogSource |
tl in sl.target &&
(one t2: LogSource |
t2.done = tl.done + a &&
t2.tobe = tl.tobe - a &&
result.target = sl.target - tl + t2) &&
(one d: LogData |
d.id = a.id &&
(d not in sl.state.logset) &&
result.state.logset = sl.state.logset + d)

a in tl.tobe &&

}

run execute for 2

The run command ensures that the description is consistent
and the intended behavior being a variant of the property
(P1) is satisfied.

3.2.2 Access Control Aspect

As a start, we introduce Principal and Target (see Figure
2). The uniqueness constraint is also imposed on the name
attribute. The definition of Principal only is shown here.

sig Principal { name: PName }
fact{ all pl,p2: Principal |
pl.name = p2.name => pl = p2 }

Permission represents an access permission that consists of
Mode, either ReadMode or WriteMode, and Target.

sig Permission { mode: Mode, target: Target }
sig Mode { }

static disj sig ReadMode extends Mode {}
static disj sig WriteMode extends Mode {}

Then, Policy is a mapping from Principal to Permission,
which represents that specified accesses are allowed for the
Principal. In particular, a system may have only one Policy
called SecurityPolicy.

sig Policy {
principals set Principal,
grant: principals ->+ Permission
}
static disj sig SecurityPolicy extends Policy {}

As shown in Figure 2, Permission has two subtypes.
AllowedPermission represents Permission that is allowed
by the SecurityPolicy. ExecutingPermission is meant to
be possessed by a specific Principal when it tries to make
an access. ExecutingPermission, representing the access
action, is checked against the set of AllowedPermission in
order for the access to be granted.

sig AllowedPermission extends Permission {}
fact{ all p: AllowedPermission |
p in allowedPermission() }
fun allowedPermission(): set Permission
{
result =
{ p : Permission |
all ps in ran(SecurityPolicy.grant) |
p in ps }
}

sig ExecutingPermission extends Permission {}

Last, isPrincipalAccessAllowed describes how to check
whether an access with Mode by a specific Principal to a
Target is allowed or not. It ensures that the SecurityPolicy
of the current system refers to the Principal, and its grant
relationship includes the necessary access permission. Ac-
tually, it uses AccessPermission and ExecutingPermission
mentioned above.

fun isPrincipalAccessAllowed
(u: Principal, t: Target, m: Mode)

{
(u in SecurityPolicy.principals) &&
isTargetAccessAllowed(u. (SecurityPolicy.grant),
t,m)
}

run isPrincipalAccessAllowed for 3 but 1 Policy,
2 Mode

The above run command specifies that the analysis is done
with one Policy (i.e. SecurityPolicy) and two Mode (both
ReadMode and WriteMode).

3.3 Weaving

Next, we show how weaving is encoded in Alloy.

3.3.1 Weaving Two Aspects

We consider here the example shown in Figure 3. First, we
need an one-to-one mapping between the two roles to be
merged. WeavingOne specifies that LogSource in the Log-
ging aspect is merged with Target in the Access Control
aspect. The case for AccessAction, however, is a bit com-
plicated because it has two relating roles to be merged in the
Access Control aspect. It can be said that AccessAction in
the Logging aspect is refined to be a mapping of Principal
to ExecutingPermission in the Access Control aspect.

sig WeavingOne {
id1l: LogSource -> Target,
id2: AccessAction ->
(Principal -> ExecutingPermission)

}
fact{
all g: WeavingOne |
one 1: LogSource, a: AccessAction,
u: Principal, ep: ExecutingPermission |
ep = u.(a.(g.1d2)) && a in 1l.tobe
}

The one-to-one mapping in WeavingOne needs a further con-
straints on each element, whose relationships are described
by the fact as below.

e AccessAction is a faithful representation of an event
that Principal makes an access encapsulated in
ExecutingPermission.

e AccessAction to be executed is stored in tobe at-
tribute of LogSource.

The application property (P1) can be encoded as fun P1 for
the weaved model description in Figure 3 by using WeavingOne
explicitly.

fun P1(s1,s2: LogState, u: Principal,
ep: ExecutingPermission, g:WeavingOne)
{
all a: AccessAction |
a in dom2(g.id2) && execute(sl,s2,a)
}

run P1 for 3 but 1 Policy, 1 Principal

The run command searches for a solution that all AccessAction

is successfully logged.

3.3.2 Weaving with Application

Since the property (P2) involves two Target as illustrated
in Figure 5, we need a model description that the applica-
tion (Section 3.1.2) is weaved with the two aspects (Figure
3). As for the case of the previous example, we first in-
troduce an one-to-one mapping constraint that merges the
corresponding roles.

WeavingTwo, similar to WeavingOne, is the base definition,
which is accompanied with further application specific con-

framework is based on, for the the access checking [7]. In
other word, we have to elaborate a formal specification of

straints in the fact. It says that SourceFile and DestinationFilehe JAAS stack inspection.

are actually Target elements managed in LogState.

sig WeavingTwo {
from: SourceFile -> LogState,
to: DestinationFile -> LogState
}
fact{
all g: WeavingTwo |
some rl: GlobalState, si: LogState |
(rl.source).(g.from) in sl.target &&
(r1.dest).(g.to) in sil.target

P21 shows that after two consecutive accesses (doubleExecute)
we have appropriate SourceFile and DestinationFile both
of which have the same data, and the accesses are logged.
Namely, the whole system obtained after weaving satisfies
the property (P2) if no access checking is involved.

fun P21(s1,s0: LogState,
al,a2: AccessAction, g: WeavingTwo)
{

doubleExecute(s1,s0,al,a2) &&

(some t3: SourceFile, t4: DestinationFile |
t3.(g.from) in sO.target &&
t4.(g.to) in sO.target &&
t3.data = t4.data) &&

(some d1, d2: LogData |
dl in sO.state.logset &&
d2 in sO.state.logset &&
dl.id = al.id && d2.id = a2.id)

}

run P21 for 3 but 1 Policy, 1 Principal

Then, we obtain P2 by adding P21 a fragment relating to the
Logging and the Access Check aspects. Actually we intro-
duce WeavingOne since it is the base condition that relates
the two aspects.

fun P2(s1,s0: LogState, u: Principal,
epl,ep2: ExecutingPermission,
g: WeavingTwo, h: WeavingOne)

{

some al,a2: AccessAction |

epl != ep2 &&
al in dom2(h.id2) &&
a2 in dom2(h.id2) &&
P21(s1,s0,al,a2,g)

}

run P2 for 3 but 1 Policy, 1 Principal

P2 can be analyzed under various conditions by defining ap-
propriate SecuityPolicy.

3.4 Refinement

As discussed in Section 2.3, the model after the refinement
is changed much in its structure and includes elements re-
lating to the stack inspection mechanism, that the JAAS

The Alloy description of the stack inspection mechanism
results in some 300 lines including the basic common vocab-
ularies in the access checking domain such as Principal and
Target [15]. Although the perperties (P1) and (P2) are to
satisfy the refined model, the Alloy description takes qutie
different forms. It is because the property fun is so defined
in terms of the elements describing the stack inspection.

4. DISCUSSION AND RELATED WORK

We first introduced a role-based aspect-oriented modeling
method and identified that two kinds of model transforma-
tion, namely refinement and weaving, were involved. Since
the model transformation is not done automatically as in the
case of aspect weavers in AOP, some verification is needed
between the model descriptions before and after the trans-
formation.

Our approach for the formal verification is to use Alloy, a
lightweight formal specification language and analysis tool.
Technically, we discussed how a role-based aspect model was
formally described in Alloy, and introduced how roles were
weaved.

In particular, we showed that weaving in the models could
be formalized as role merging, which was compactly repre-
sented in a declarative manner in Alloy. The constraint-
based Alloy analyzer was easy to use for reasoning about
whether a given property was satisfied before and after weav-

ing.

As for the translation from the diagram-based descriptions
to the Alloy descriptions, we resolved some ambiguity in the
original diagrams and added further detailed specification
fragments, which was done manually. We need further study
in order to obtain an automatic translation tool.

It seems that our approach to the weaving, actually a role
merging, is interesting in itself. Its Alloy description is es-
sentially an one-to-one mapping between the involving roles.
It, however, is important to point out here that the mapping
is accompanied with further constraints that are specific to
the roles.

As in the case of weaving the Access Control with the Log-
ging aspect, a role (AccessAction) is refined to be a particu-
lar relationship between two roles (a mapping of Principal
to ExecutingPermission). This implies that some weaving
should take into account the refinement between the roles.
Thus, weaving in AOM depends on the application seman-
tics, and thus it is hard to have automatic weavers as in the
case of AOP. However, thanks to the declarative style of ex-
pressing such constraints in Alloy, we were able to formally
express such a role merging clearly and incrementally.

Here we give a brief survey on related work. Since security
is one of the most interesting cross-cutting concerns, the
aspect-oriented approaches have been reported [4][6]. Some
work on the role-based and aspect-oriented modeling are
mentioned in Section 2.1. Since the weaving in this paper is

essentially a transformation of the models in which object
interactions are dominant, our approach is related to work
on composing design pattern [19]. Further, the formalization
of design patterns [3][14][21] share some common technical
points with the formal descriptions of the role-based aspect-
oriented model discussed in the paper.

Last, we are interested in an automatic weaver for aspect-
oriented models. It seems mandatory to have formaliza-
tion of both aspect-oriented model descriptions and the two
model transformations, refinement and weaving. This pa-
per presented how aspect weaving was formally represented
and analyzed with Alloy by using a specific case, which is
expected be a start of further research.

5. REFERENCES
[1] E. Baniassad and S. Clarke. Theme: An Approach for
Aspect-Oriented Analysis and Design. In Proc. ICSE
2004, May 2004.

[2] H. Cannon. Flavors: A Non-hierarchical Approach to
Object-Oriented Programming. Symbolics Inc., 1982.

[3] A. Cechich and R. Moore. A Formal Basis for
Object-Oriented Patterns. In Proc. APSEC”99, 1999.

[4] B. De Win, B. Vanhaute, and B. De Decker. Security
Through Aspect-Oriented Programming. In Advances
in Network and Distributed Systems Securily, pages
125-138, Kluwer Academic 2001.

[5] T. Elrad, R. Fllman, and A. Bader. Aspect-Oriented
Programming. Comm. ACM, Vol.44, No.10, October
2001.

[6] G. Georg, I. Ray, and R. France. Using Aspects to
Design a Secure System. In Proc. 8th ICECCS,
December 2002.

[7] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2
Platform Security (2ed.). Addison Wesley 2003.

[8] K. B. Graversen and K. Osterbye. Aspect Modeling as
Role Modeling. OOPSLA 2002 Workshop on
TS4AO0SD , November 2002.

[9] D. Jackson, I. Shlyakhter, and M. Sridharan. A
Micromodularity Mechanism. In Proc. FSE-9,
September 2001.

[10] D. Jackson. Lightweight Analysis of Object
Interactions. In Proc. TACS 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP’97, 1997.

[12] K. Lieberherr. Controlling the Complexity of Software
Designs. In Proc. ICSE 2004, pages 2—-11, May 2004.

[13] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation Semantics of Aspect-Oriented Programs.
In Foundations of AOL Workshop, 2002.

[14] T. Mikkonen. Formalizing Design Patterns. In Proc.
ICSE’98, pages 115-124, 1998.

[15] S. Nakajima and T. Tamai. Formal Design Analysis of
Changes in Security Policy. IPSJ SIG Technical
Report (in Japanese), 2003-SE-143-8, July 2003.

[16] B.Nuseibeh, J. Kramer, and A. Finkelstein. A
Framework for Expressing the Relationships between
Multipleviews in Requirements Specifications. ACM
TOSEM, Vol.2, No.10, pages 760-773, October 1994.

[17] D. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Comm. ACM,
Vol.15, No.12, pages 1053-1058, December 1972.

[18] T. Reenskaug, P. Wold, and O.A. Lehne. Working
with Objects: the OOram Software Engineering
Method. Manning Publications, 1996.

[19] D. Riehle. Composite Design Patterns. In Proc.
OOPSLA’97, pages 218-228, 1997.

[20] D. Riehle and T. Gross. Role Model Based Framework
Design and Integration. In Proc. OOPSLA’98, pages
117-133, 1998.

[21] M. Saeki. Behavioral Specification of GOF Design
Patterns with LOTOS. In Proc. APSEC 2000, 2000.

[22] D. D’Souza and A. C. Wills. Objects, Components,
and Frameworks with UML. Addison Wesley, 1999.

[23] T. Tamai. Objects and Roles: Modelling based on the
Dualistic View. Information and Software Technology,
vol. 41, no. 14, pages 1005-1010, 1999.

[24] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N
Degrees of Separation: Multi-Dimentional Separation
of Concerns. In Proc. ICSE’99, pages 107-119, May
1999.

